GENERALIZED POTENTIALS IN A DIFFERENTIAL GAME WITH A FIXED TERMINATION INSTANT PMM Vol. 42, № 2, 1978, pp. 195-201 M.BAIBAZAROV and A.I.SUBBOTIN (Alma-Ata and Sverdlovsk) (Received June 22, 1977)

A position differential game with a fixed termination instant is examined, the payoff in which is the value of a specified function of the final state. A family of functions which are treated, in accord with the dynamic programming method, as generalized potentials is defined. It is shown that a function of the differential game's value coincides the lower envelope of this family of generalized potentials. The problem on the existence of players' strategies optimal in -the -large is investigated as well. The material in this paper adjoins the investigations in [1 - 9].

1. Let a controlled system's motion be described by the differential equation

$$\begin{aligned} x' &= f(t, x, u, v), \quad f: [t_0, \vartheta] \times R^n \times P \times Q \to R^n \\ t &\in [t_0, \vartheta], \quad x \in R^n, \quad u \in P \subset R^p, \quad v \in Q \subset R^q \end{aligned}$$
(1.1)

Here P and Q are compacts; f is a continuous function satisfying a Lipschitz condition in variable x in each domain $[t_0, \mathbf{0}] \times D \times P \times Q$, where D is some bounded set in \mathbb{R}^n . It is assumed that the initial points $x_0 = x[t_0]$ belong to some compactum X_{t_0} . The symbol X_{τ} denotes the aggregate of all points x_{τ} for which a solution exists for the contingency equation

$$\begin{aligned} x^{\cdot}[t] &\equiv \operatorname{co} \left\{ f(t, x, u, v) \colon u \in P, v \in Q \right\}, \quad t_{0} \leq t \leq \tau \\ x[t_{0}] &\equiv X_{t_{0}}, \quad x[\tau] = x_{\tau} \end{aligned}$$

It is assumed that the sets X_{τ} ($t_0 \leqslant \tau \leqslant \vartheta$) are nonempty and uniformly bounded, we shall use the following notation:

$$H = \{(t, x): t_0 \leqslant t \leqslant \vartheta, x \in X_t\}$$

We examine a differential game in which the payoff is the quantity $\sigma(x[\vartheta])$, where $\sigma: \mathbb{R}^n \to \mathbb{R}$ is a specified continuous function and $x[\vartheta]$, is the system's phase state realized at the final instant $t = \vartheta$.

It is assumed that the first player, who has control u at his disposal, selects pure position strategies $U \div u(t, x)$ and strives to minimize the payoff's value and the second player, who has control v at his disposal, selects the counterstrategies

 $V^u - v$ (t, x, u) and strives to maximize $\sigma(x[\Phi])$. In this game there exists, for each initial position $(t_*, x_*) = H$, a saddle point which is formed by the pair (U_e, V_e^u) , where U_e and V_e^u are a pure strategy and counterstrategy, extremal

to the bridges

$$W_{u_*}^{\circ} = \{(t, x) \in H: c_0(t, x) \leqslant c_0(t_*, x_*)\}$$
(1.2)

$$W_{\mathfrak{p}}^{\circ} = \{(t, x) \in H: c_0(t, x) \ge c_0(t_*, x_*)\}$$
(1.3)

respectively [3]. Here $c_0: H \to R$ is a function of the game's value. It is well known also that this function can be constructed in various ways [3-9]. In the present paper we show that function c_0 can be determined as the lower envelope of a certain family of generalized potentials.

2. Let us define the family of generalized potentials. For the point (t^*, t_*, x_*, u_*) , where $(t_*, x_*, u_*) \in H \times P$ and $t^* \in [t, \vartheta]$, the symbol $G(t^*, t_*, x_*, u_*)$ denotes the aggregate of points x^* for which a solution exists of the contingency equation

$$\begin{aligned} x^{*}[t] &\in c_{0} \{ f(t, x[t], u_{*}, v) : v \in Q \}, \quad t_{*} \leq t \leq t^{*} \\ x[t_{*}] &= x_{*}, \quad x[t^{*}] = x^{*} \end{aligned}$$

(i.e., $G(t^*, t_*, x_*, u_*)$ is the closure of the attainability domain for system (1.1) under a constant control $u(t) = u_*$ and all possible program controls $v(t) \in Q$, $t_* \leq t \leq t^*$).

A function $\omega: H \to R$ is called a generalized potential if the following three conditions are fulfilled for it:

1°. Function ω is continuous on H.

. .

2°. The boundary condition

$$\omega(\mathfrak{G}, x) = \mathfrak{o}(x) \quad \text{for } x \in X \tag{2.1}$$

is satisfied .

3°. The inequality

$$\lim_{t^* \to t_* \to 0} \min_{u \in P} \max_{x \in G \ (t^*, t_*, x_*, u)} \frac{\omega \ (t^*, \ x) - \omega \ (t_*, \ x_*)}{t^* - t_*} \leqslant 0 \tag{2.2}$$

is valid for any point $(t_*, x_*) \in H, t_* < \vartheta$.

The aggregate of functions ω satisfying these three conditions is denoted Ω . We indicate certain statements valid for set Ω .

Lemma 2.1. Set Ω is nonempty. To prove this it suffices to consider the function

$$\omega(t_*, x_*) = \min_{u \in P} \max_{x \in G \ (\vartheta, t_*, x_*, u)} \sigma(x), \quad (t_*, x_*) \in H$$
(2.3)

and to verify directly the fulfillment of conditions $1^{\circ} - 3^{\circ}$ for it.

Lemma 2.2. For any function $\omega_* \in \Omega$ and any number $\tau \in [t_0, \vartheta]$ the function ω^* defined by the relation

$$\omega^{*}(t_{*}, x_{*}) = \begin{cases} \omega_{*}(t_{*}, x_{*}) & \text{for } t_{*} \in [\tau, \vartheta], x_{*} \in X_{t_{*}} \\ \min_{u \in P} \max_{x \in G} (\tau, t_{*}, x_{*}, u) \\ \text{for } t_{*} \in [t_{0}, \tau], x_{*} \in X_{t_{*}} \end{cases}$$
(2.4)

belongs to set Ω .

Lemma 2.3. The lower envelope ω_* of any finite collection of functions $\omega_i \in \Omega$ (i = 1, 2, ..., m) defined by the equality

$$\omega_{*}(t_{*}, x_{*}) = \min_{1 \leq i \leq m} \omega_{i}(t_{*}, x_{*}), (t_{*}, x_{*}) \in H$$
(2.5)

belongs to set Ω .

Lemma 2.2 and 2.3 are proved by simple verification of conditions $1^{\circ} - 3^{\circ}$ for the functions ω^* of (2.4) and ω_* of (2.5).

For the next statement we introduce some notation. Let $x \in X_0$ and $\beta > 0$; we set

$$d_* (x, \beta) = \sigma (x) - \min \{\sigma (y)\}: y \in X_{\mathfrak{d}} \cap S (x, \beta)\}$$

$$S (x, \beta) = \{y \in \mathbb{R}^n: || y - x || \leq \beta\}$$

$$d^* (\beta) = \max \{d_* (x, \beta): x \in X_{\mathfrak{d}}\}$$

$$d (\alpha) = d^* (\alpha \exp \lambda (\mathfrak{d} - t_0)) \quad (\alpha > 0)$$

where λ is the Lipschitz constant with respect of variable x in the domain $H \times P \times Q$ for function f. We note that the continuity of function σ implies $d(\alpha) \rightarrow 0$

0 as $\alpha \rightarrow 0$.

Lemma 2.4. For any points $(t_*, x_*) \in H$ and $(t_*, x^*) \in H$ and for every function $\omega \in \Omega$ we can construct a function $\omega^\circ \in \Omega$ satisfying the inequality

$$\omega^{\circ}(t_{*}, x^{*}) \leqslant \omega(t_{*}, x_{*}) + d(||x_{*} - x^{*}||)$$
(2.6)

We present the proof of this lemma. Let

 $r(t) = ||x_{*} - x^{*}|| \exp \lambda (t - t_{*})$

We consider the function $\eta: H \to R$ defined by the equality

$$\eta (t, x) = \min \{ \omega (t, y) : y \in X_t \cap S (x, r(t)) \} + d (||x_* - x^*||)$$

It can be proved that function η satisfies the inequalities

$$(t_*, x^*) \leqslant \omega (t_*, x_*) + d (|| x_* - x^* ||), \quad \eta (\vartheta, x) \geqslant \sigma (x) \quad \text{for} \ x \in X_{\vartheta}$$

is continuous and that condition 3° is satisfied for it. Further, it can be verified that the function $\omega^{\circ}(t, x) = \min \{n(t, x), \omega(t, x)\}, \quad (t, x) \in H$

$$\omega^{\circ}(t, x) = \min \{\eta(t, x), \omega(t, x)\}, \quad (t, x) \in H$$

belongs to class Ω and satisfies inequality (2.6).

We investigate the lower envelope of family Ω

$$\omega_0(t, x) = \inf \{ \omega(t, x) \colon \omega \in \Omega \}, \quad (t, x) \in H$$
(2.7)

The following statement is valid.

Theorem 2.1. The function ω_0 of (2.7) is upper-semicontinuous on H; the function ω_0 is continuous in x on X_t for each $t \in [t_0, \vartheta]$; the relations

$$\omega_0(\mathbf{0}, \mathbf{x}) = \sigma(\mathbf{x}), \quad \mathbf{x} \in X_{\mathbf{0}} \tag{2.8}$$

$$\inf_{t^{\bullet} \in [t^{\bullet}, \mathfrak{d}]} \min_{u \in P} \max_{x \in G} (t^{\bullet}, t_{\bullet}, x_{\bullet}, u)} \omega_{0}(t^{*}, x) \ge \omega_{0}(t_{\bullet}, x_{\bullet})$$
(2.9)

are valid.

$$\forall (t_*, x_*) \in H, \quad t_* < \vartheta$$

Proof. The upper-semicontinuity of function ω_0 follows directly from its definition as the lower envelope of the set Ω of continuous functions. The continuity in x of function ω_0 derives from Lemma 2.4. Equality (2.8) follows immediately from (2.1) and (2.7). Let us prove inequality (2.9). We assume the contrary. Let a point $(t_*, x_*) \in H$, the numbers $\tau \in (t_*, \vartheta]$ and $\alpha > 0$ and the control $u_* \in P$ exist such that

$$\max_{\boldsymbol{x} \in G \ (\tau, t_*, x_*, u_*)} \omega_0(\tau, x) \leq \omega_0(t_*, x_*) - 3\alpha$$
(2.10)

By the definition of function ω_0 we can find, for any point $x^* \in G^* = G(\tau, t_*, x_*, u_*)$, a function $\omega(\cdot | x^*) \in \Omega$ so as to fulfill the inequality $\omega(\tau, x^* | x^*) \leq \omega_0(\tau, x^*) + \alpha$. The functions $\omega_0(\tau, x)$ and $\omega(\tau, x | x^*)$ are continuous in x; therefore, a number $\beta(x^*) > 0$ exists for any point $x^* \in G^*$, such that

$$\omega (\tau, x \mid x^*) \leqslant \omega_0 (\tau, x) + 2\alpha$$
 for $x \in S (x^*, \beta (x^*))$

We obtain a covering of compactum G^* by spheres $S(x^*, \beta(x^*))$. From this covering we can separate a finite subcovering S_i (i = 1, ..., m) so that

$$\omega_i(\tau, x) \leqslant \omega_0(\tau, x) + 2\alpha, \quad x \in S_i \quad (i = 1, 2, \dots, m)$$
 (2.11)

where the ω_i are some functions from Ω . Let ω_* be the lower envelope of the aggregate $\{\omega_i, i = 1, 2, ..., m\}$. According to Lemma 2.3, $\omega_* \in \Omega$, and inequality

$$\omega_* (\tau, x) \leqslant \omega_0 (\tau, x) + 2\alpha, \quad x \in G^*$$
(2.12)

follows from (2.11). We introduce into consideration the function ω^* of (2.4) for the function ω_* . According to Lemma 2.2, $\omega^* \in \Omega$. The inequality ω^* $(t_*, x_*) \leq \max \{\omega_* \ (\tau, x^*) : x^* \in G^*\}$ follows directly from the definition of set

 $G^* = G(\tau, t_*, x_*, u_*)$ and of function ω^* of (2.4). Allowing for estimates (2.12) and (2.10), this inequality can be prolonged as follows:

$$\omega^*(t_*, x_*) \leqslant \max_{x^* \in G^*} \omega_*(\tau, x^*) \leqslant \max_{x^* \in G^*} \omega_0(\tau, x^*) + 2\alpha \leqslant \omega_0(t_*, x_*) - \alpha$$

Thus, we find that a function $\omega^* \oplus \Omega$ exists for which $\omega^*(t_*, x_*) < \omega_0(t_*, x_*)$. We have arrived at a contradiction with the definition of function ω_0 . Inequality (2.9) and Theorem 2.1 have been proved.

3. Let us show that

$$\omega_0(t_*, x_*) = c_0(t_*, x_*), \quad (t_*, x_*) \in H$$
(3.1)

where $c_0(t_*, x_*)$ is the differential game's value in the class of pure position strategies $U \div u(t, x)$ and counterstrategies $V^u \div v(t, x, u)$ for the initial position (t_*, x_*) . At first we present the following statement.

Lemma 3,1. The set

$$W = \{(t, x) \in H: \omega(t, x) \leq c\}$$
(3.2)

is u_* -stable [3] for any number c and any function $\omega \subseteq \Omega$.

To prove this lemma we can consider the set

$$W_{\alpha} = \{(t, x) \in H: \omega(t, x) \leqslant c + \alpha(t - t_0)\} \quad (\alpha > 0)$$

and, using (2.2), verify that it is u_* -stable. Then the u_* -stability of the set W of (3.2) can be obtained as a consequence of the u_* -stability of set W_{α} in the limit as $\alpha \to 0$.

Also valid is the following

Lemma 3.2. The set

$$W^{\mathbf{0},\mathbf{c}} = \{(t, x) \in H: \omega_0(t, x) \leqslant \mathbf{c}\}$$

$$(3.3)$$

is v-stable [3] for any number c.

The validity of this lemma follows immediately from (2.9). We make use of Lemmas 3.1 and 3.2 to prove equality (3.1). For a specified position (t_*, x_*) and for some number $\beta > 0$ we define a function ω_{β} so as to fulfill the inequality $\omega_{\beta}(t_*, x_*) \leqslant \omega_0(t_*, x_*) + \beta$. We construct a position strategy $U_{\beta} \div u_{\beta}(t, x)$ extremal to set W of (3.2) wherein $\omega = \omega_{\beta}$ and $c = \omega_{\beta}(t_*, x_*)$. Then, according to the results in [3], the inequality

$$\max \{ \sigma(x) \colon x \in X [\vartheta; t_*, x_*, U_\beta] \} \leqslant \omega_0(t_*, x_*) + \beta$$
(3.4)

is valid for this strategy.

Here and below $X [\vartheta; t_*, x_*, U]$ and $X [\vartheta, t_*, x_*, V^u]$ are the sets of points $x [\vartheta; t_*, x_*, U]$ and $x [\vartheta; t_*, x_*, V^u]$ that are realized at instant ϑ by all possible motions generated by strategies $U \div u(t, x)$ and counterstrategies $V^u \div v(t, x, u)$, respectively. On the other hand, the inequality

$$\min \{\sigma(x) : x \in X [\vartheta; t_*, x_*, V_e^u]\} \ge \omega_0(t_*, x_*)$$
(3.5)

is valid for the counterstrategy $V_e^u \div v(t, x, u)$ extremal to the set $W^{0,c}$ of (3.3) wherein $c = \omega_0(t_*, x_*)$ As $\beta \to 0$, from (3.4) and (3.5) we obtain

$$\inf_{U} \max \{ \sigma(x) : x \in X [\vartheta; t_*, x_*, U] \} =$$

$$\max_{V^u} \min \{ \sigma(x) : x \in X [\vartheta; t_*, x_*V^u] \}$$
(3.6)

Hence it follows that the quantity $\omega_0(t_*, x_*)$ coincides with the value $c_0(t_*, x_*)$ of the differential game in the class of strategies $U \div u(t_*, x)$ and counterstrategies $V^u \div v(t, x, u)$.

It is well known that not only all sets W of (3, 2) but also the set

$$W_c^{\circ} = \{(t, x) \in H: \omega_0(t, x) = c_0(t, x) \leqslant c\}$$

$$(3.7)$$

corresponding to the lower envelope $\omega_0 = c_0$ and to any number c are u_* -stable. The lower bound in (3.6) is reached by the strategy $U_e \div u_e(t, x)$ extremal to the set W_c° of (3.7) with $c = c_0(t_*, x_*)$. It is well known also that the function $c_0 = \omega_0$ is continuous on H.

We note the following circumstance. As shown above, the u_* -stability of the set W of (3.2) follows from the condition $\omega \subseteq \Omega$. However, the converse is

false, i.e., the membership of a function ω_0 to class Ω does not follow from the u_* -stability of set W_c° of (3.7). As an example, where the lower envelope ω_0 does not satisfy condition 3°, we can cite the well-known game [1] specified by the equation

$$x_1 = x_2 + v, \ x_2 = u, \ | \ u | \leq 1, \ | \ v | \leq 1, \ 0 = t_0 \leq t \leq 0 = 2$$

and by the function $\sigma(x) = |x_1|$. Here

$$\lim_{t^* \to t_* + 0} \min_{u \in P} \max_{x \in G(t^*, t_*, x_*, u)} \frac{\omega_0(t^*, x) - \omega_0(t_*, x_*)}{t^* - t_*} = 2 - t_* > 0$$

at points (t_*, x_*) , where $t_* \in [1, 2)$ and $x_{*1} + (2 - t)x_{*2} = 0$.

4. Let us consider the case when $c_0 = \omega_0 \in \Omega$. In this case we construct a position strategy $U^{\circ} \div u^{\circ}(t, x)$ optimal in-the-large, for which the inequality $\sigma(x[\vartheta]) \leqslant c_0(\tau, x[\tau])$ is valid for any motion $x[t] = x[t; t_*, x_*, U^{\circ}]$ and any instant $\tau \in [t_*, \vartheta]$. We note that the strategy U_e extremal to the set $W_{u_*}^{\circ}$ of (1.2) ensures the fulfillment of the inequality $\sigma(x[\vartheta]) \leqslant c_0(t_*, x_*)$ for the specified initial position (t_*, x_*) ; but an instant $\tau \in [t_*, \vartheta]$ and a motion $x[t] = x[t; t_*, x_*, U_e]$ can exist such that $\sigma(x[\vartheta]) > c_0(\tau, x[\tau])$.

It is well known that the strategy $U^{\circ} + u^{\circ}(t, x)$, optimal in-the-large, can be constructed when the function c_0 is continuously differentiable in t and in x at points $(t, x) \in H$ where $c_0(t, x) > \sigma_0 = \min \{\sigma(x) : x \in X_0\}$ [3]. As an example in which the function $c_0 = \omega_0$ is not continuously differentiable but does belong to the class Ω of generalized Bellman functions, we can cite the game specified by the equations $x_1 = x_3$, $x_2 = x_4$, $x_3 = u_1 - v_1$, $x_4 = u_2 - v_{23} |u_1| \leq \lambda_1$, $|u_3| \leq \lambda_3$, $(v_1^2 + v_3^2)^{1/2} \leq \lambda_2$, $\lambda_1 < \lambda_2$ and by the function $\sigma(x) = x_1^2 + x_3^2$.

Thus, let $\omega_0 \in \Omega$. For a positive parameter α we define the functions δ_{α} : $H \to R$ and $u_{\alpha}: H \to P$ which associate with the point $(t_*, x_*) \in H$ a number $\delta_{\alpha}(t_*, x_*) > 0$ and a vector $u_{\alpha}(t_*, x_*) \in P$ satisfying the inequality

$$\begin{split} \max_{x} \omega_{0} \left(t_{*} + \delta_{\alpha} \left(t_{*}, x_{*} \right), x \right) &\leqslant \omega_{0} \left(t_{*}, x_{*} \right) + \alpha \delta_{\alpha} \left(t_{*}, x_{*} \right) \\ x &\in G \left(t_{*} + \delta_{*} \left(t_{*}, x_{*} \right), t_{*}, x_{*}, u_{\alpha} \left(t_{*}, x_{*} \right) \right) \end{split}$$

The existence of such functions δ_{α} and u_{α} follows from (2, 2). We now assume that the function $u^{\circ}: H \to P$ associates a vector $u^{\circ}(t_*, x_*)$ with the point $(t_*, x_*) \in H$, which is the limit of some sequence $u_{\alpha_k}(t_*, x_*)$ ($k = 1, 2, \ldots$), where $\alpha_k \to 0$ as $k \to \infty$ (the sequence of numbers α_k depends, in general, on the point (t_*, x_*)). To determine the motions generated by strategy $U^{\circ} \to u^{\circ}(t, x)$ we require the function $\delta_{\varepsilon}^{\circ}: H \to R$. This function is defined as follows: for a prescribed parameter $\varepsilon > 0$ and for the point $(t_*, x_*) \in H$ we determine a number $\alpha_* > 0$ so as to fulfil the inequality

$$\| u^{\circ}(t_{*}, x_{*}) - u_{\alpha_{*}}(t_{*}, x_{*}) \| < \varepsilon, \quad \alpha_{*} \leqslant \varepsilon$$

and we set $\delta_{\varepsilon}^{\circ}(t_*, x_*) = \delta_{\alpha_*}(t_*, x_*)$. We define the motion $x [t; t_*, x_*, U^{\circ}]$ $(t_* \leqslant t \leqslant \vartheta)$ generated by strategy $U^{\circ} \div u^{\circ}(t, x)$ as the limit of a sequence of Euler polygonal lines. However, in contrast to [3], wherein the partitionings Δ of the segment $[t_*, \vartheta]$ can be selected in advance at the initial instant, here we examine partitionings Δ that are formed during the game by the function $\delta_{\varepsilon}^{\circ}$. For a chosen parameter $\varepsilon > 0$ and for the control v[t] ($t_* \ll t \ll \vartheta$) realized by the second player, the approximate motion (Euler polygonal line) $x[t] = x[t; t_*, x_*, U^{\circ}, v[\cdot], \delta_{\varepsilon}^{\circ}]$ can be meaningfully determined as the motion generated by the second

player's control v[t] ($t_* \ll t \ll \vartheta$) and by the first player's piecewise-constant control

$$u [t] = u^{\circ} (\tau', x [\tau']), \quad \tau' \leqslant t \leqslant \tau' + \delta_{\varepsilon}^{\circ} (\tau', x [\tau'])$$

Formally the approximate motion $x[t; t_*, x_*, U^\circ, v[\cdot], \delta_{\varepsilon}^\circ]$ is determined in accord with [5]. Then, every limit, uniform on $[t_*, \vartheta]$, of the sequence of approximate motions $x[t; t_*, x_*, U^\circ, v_k[\cdot], \delta_{\varepsilon_k}^\circ]$, where $\varepsilon_k > 0$ (k = 1, 2, ...)is some sequence of numbers converging to zero, is called a motion $x[t; t_*, x_*, U^\circ]$. It can be shown that under the given definition of motions the strategy $U^\circ \div u^\circ(t, x)$ is optimal in-the -large.

When $c_0 = \omega_0 \notin \Omega$ we can construct a strategy $U^{(e)} \div u^{(e)}$ (t, x), ε -optimal in-the-large, for which the inequality $\sigma(x[\vartheta]) \leq c_0(t, x[t]) + \varepsilon$ is valid for any instant $t \in [t_*, \vartheta]$ and for every motion $x[t] = x[t; t_*, x_*, U^{(e)}]$. The construction of this strategy and of the motions it generates can be given within the framework of an extremal construction [3].

REFERENCES

- 1. Isaacs, R., Differential Games, New York, J. Wiley and Sons, Inc., 1965.
- Baibazarov, M., Sufficient optimality conditions in differential games. PMM Vol. 35, No. 6, 1971.
- Krasovskii, N.N. and Subbotin, A.I., Position Differential Games. Moscow, "Nauka", 1974.
- Pontriagin, L.S., On linear differential games. 11. Dokl. Akad. Nauk SSSR, Vol. 175, No.4, 1967.
- 5. Pshenitchnyi, B.N., E-strategies in differential games. In: A. Blaquière (Ed.), Topics in Differential Games. New York - London - Amsterdam, North -Holland Publ. Co., 1973.
- Pshenitchnyi, B.N. and Sagaidak, M.I., On fixed-time differential games. Kibernetika, No.2, 1970.
- Chentsov, A.G., On a game problem of encounter at a prescribed instant. Mat. Sb., Vol. 99, No. 3, 1976.
- Fleming, W.H., A note on differential games of prescribed duration. In: Contributions to the Theory of Games. Vol. 3, Princeton, N.J., Princeton Univ. Press, 1957.
- 9. Varaiya, P. and Jiguan, Lin., Existence of saddle points in differential games. SIAM J. Control, Vol. 7, No.1, 1969.

Translated by N.H.C.